This non-implication,
Form 362 \( \not \Rightarrow \)
Form 9,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 91 | <p> \(PW\): The power set of a well ordered set can be well ordered. </p> |
Conclusion | Statement |
---|---|
Form 217 | <p> Every infinite partially ordered set has either an infinite chain or an infinite antichain. </p> |
The conclusion Form 362 \( \not \Rightarrow \) Form 9 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2\) The Second Fraenkel Model | The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \). |
\(\cal N34\) Pincus' Model X | For each \(q\in\Bbb Q\), let \(C_q=\{a_q,b_q\}\), a pair of atoms and let \(A=\bigcup_{q\in\Bbb Q}C_q\) |