This non-implication, Form 369 \( \not \Rightarrow \) Form 317, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 6026, whose string of implications is:
    67 \(\Rightarrow\) 89 \(\Rightarrow\) 90 \(\Rightarrow\) 91 \(\Rightarrow\) 79 \(\Rightarrow\) 369
  • A proven non-implication whose code is 5. In this case, it's Code 3: 161, Form 67 \( \not \Rightarrow \) Form 308-p whose summary information is:
    Hypothesis Statement
    Form 67 <p> \(MC(\infty,\infty)\) \((MC)\), <strong>The Axiom of Multiple Choice:</strong> For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). </p>

    Conclusion Statement
    Form 308-p <p> If \(p\) is a prime and if \(\{G_y: y\in Y\}\) is a set of finite groups, then the weak direct product \(\prod_{y\in Y}G_y\) has a maximal \(p\)-subgroup. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 2119, whose string of implications is:
    317 \(\Rightarrow\) 14 \(\Rightarrow\) 49 \(\Rightarrow\) 30 \(\Rightarrow\) 62 \(\Rightarrow\) 308-p

The conclusion Form 369 \( \not \Rightarrow \) Form 317 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N6\) Levy's Model I \(A=\{a_n : n\in\omega\}\) and \(A = \bigcup \{P_n: n\in\omega\}\), where \(P_0 = \{a_0\}\), \(P_1 = \{a_1,a_2\}\), \(P_2 =\{a_3,a_4,a_5\}\), \(P_3 = \{a_6,a_7,a_8,a_9,a_{10}\}\), \(\cdots\); in generalfor \(n>0\), \(|P_n| = p_n\), where \(p_n\) is the \(n\)th prime

Edit | Back