This non-implication,
Form 403 \( \not \Rightarrow \)
Form 100,
whose code is 6,
is constructed around a proven non-implication as follows:
Hypothesis | Statement |
---|---|
Form 202 | <p> \(C(LO,\infty)\): Every linearly ordered family of non-empty sets has a choice function. </p> |
Conclusion | Statement |
---|---|
Form 100 | <p> <strong>Weak Partition Principle:</strong> For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\). </p> |
The conclusion Form 403 \( \not \Rightarrow \) Form 100 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N12(\aleph_1)\) A variation of Fraenkel's model, \(\cal N1\) | Thecardinality of \(A\) is \(\aleph_1\), \(\cal G\) is the group of allpermutations on \(A\), and \(S\) is the set of all countable subsets of \(A\).In \(\cal N12(\aleph_1)\), every Dedekind finite set is finite (9 is true),but the \(2m=m\) principle (3) is false |