This non-implication,
Form 35 \( \not \Rightarrow \)
Form 198,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 337 | <p> \(C(WO\), <strong>uniformly linearly ordered</strong>): If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\). </p> |
Conclusion | Statement |
---|---|
Form 198 | <p> For every set \(S\), if the only linearly orderable subsets of \(S\) are the finite subsets of \(S\), then either \(S\) is finite or \(S\) has an amorphous subset. </p> |
The conclusion Form 35 \( \not \Rightarrow \) Form 198 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N2\) The Second Fraenkel Model | The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \). |