This non-implication, Form 38 \( \not \Rightarrow \) Form 1, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 9751, whose string of implications is:
    35 \(\Rightarrow\) 38
  • A proven non-implication whose code is 5. In this case, it's Code 3: 105, Form 35 \( \not \Rightarrow \) Form 190 whose summary information is:
    Hypothesis Statement
    Form 35 <p> The union of countably many meager subsets of \({\Bbb R}\) is meager. (Meager sets are the same as sets of the first category.) <a href="/books/8">Jech [1973b]</a> p 7 prob 1.7. </p>

    Conclusion Statement
    Form 190 <p> There is a non-trivial injective Abelian group. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 10503, whose string of implications is:
    1 \(\Rightarrow\) 190

The conclusion Form 38 \( \not \Rightarrow \) Form 1 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N28\) Blass' Permutation Model The set \(A=\{a^i_{\xi}: i\in \Bbb Z, \xi\in\aleph_1\}\)

Edit | Back