This non-implication, Form 48-K \( \not \Rightarrow \) Form 322, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 7501, whose string of implications is:
    23 \(\Rightarrow\) 151 \(\Rightarrow\) 122 \(\Rightarrow\) 48-K
  • A proven non-implication whose code is 5. In this case, it's Code 3: 67, Form 23 \( \not \Rightarrow \) Form 322 whose summary information is:
    Hypothesis Statement
    Form 23 <p> \((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\). </p>

    Conclusion Statement
    Form 322 <p> \(KW(WO,\infty)\), <strong>The Kinna-Wagner Selection Principle for a well ordered family of sets:</strong> For every  well ordered set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See <a href="/form-classes/howard-rubin-15">Form 15</a>). </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 48-K \( \not \Rightarrow \) Form 322 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N26\) Brunner/Pincus Model, a variation of \(\cal N2\) The set ofatoms \(A=\bigcup_{n\in\omega} P_n\), where the \(P_n\)'s are pairwisedisjoint denumerable sets; \(\cal G\) is the set of all permutations\(\sigma\) on \(A\) such that \(\sigma(P_n)=P_n\), for all \(n\in\omega\); and \(S\)is the set of all finite subsets of \(A\)

Edit | Back