This non-implication,
Form 70 \( \not \Rightarrow \)
Form 157,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 91 | <p> \(PW\): The power set of a well ordered set can be well ordered. </p> |
Conclusion | Statement |
---|---|
Form 157 | <p> <strong>Theorem of Goodner:</strong> A compact \(T_{2}\) space is extremally disconnected (the closure of every open set is open) if and only if each non-empty subset of \(C(X)\) (set of continuous real valued functions on \(X\)) which is pointwise bounded has a supremum. </p> |
The conclusion Form 70 \( \not \Rightarrow \) Form 157 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N3\) Mostowski's Linearly Ordered Model | \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\) |