This non-implication, Form 74 \( \not \Rightarrow \) Form 171, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 6938, whose string of implications is:
    337 \(\Rightarrow\) 92 \(\Rightarrow\) 94 \(\Rightarrow\) 74
  • A proven non-implication whose code is 5. In this case, it's Code 3: 691, Form 337 \( \not \Rightarrow \) Form 171 whose summary information is:
    Hypothesis Statement
    Form 337 <p> \(C(WO\), <strong>uniformly linearly ordered</strong>):  If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\). </p>

    Conclusion Statement
    Form 171 <p> If \((P,\le)\) is a partial order such that \(P\) is the denumerable union of finite sets and all antichains in \(P\) are finite then for each denumerable family \({\cal D}\) of dense sets there is a \({\cal D}\) generic filter. </p>

  • This non-implication was constructed without the use of this last code 2/1 implication

The conclusion Form 74 \( \not \Rightarrow \) Form 171 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N6\) Levy's Model I \(A=\{a_n : n\in\omega\}\) and \(A = \bigcup \{P_n: n\in\omega\}\), where \(P_0 = \{a_0\}\), \(P_1 = \{a_1,a_2\}\), \(P_2 =\{a_3,a_4,a_5\}\), \(P_3 = \{a_6,a_7,a_8,a_9,a_{10}\}\), \(\cdots\); in generalfor \(n>0\), \(|P_n| = p_n\), where \(p_n\) is the \(n\)th prime

Edit | Back