This non-implication, Form 111 \( \not \Rightarrow \) Form 188, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 2263, whose string of implications is:
    317 \(\Rightarrow\) 14 \(\Rightarrow\) 49 \(\Rightarrow\) 30 \(\Rightarrow\) 62 \(\Rightarrow\) 121 \(\Rightarrow\) 122 \(\Rightarrow\) 250 \(\Rightarrow\) 111
  • A proven non-implication whose code is 5. In this case, it's Code 3: 626, Form 317 \( \not \Rightarrow \) Form 126 whose summary information is:
    Hypothesis Statement
    Form 317 <p> <strong>Weak Sikorski Theorem:</strong>  If \(B\) is a complete, well orderable Boolean algebra and \(f\) is a homomorphism of the Boolean algebra \(A'\) into \(B\) where \(A'\) is a subalgebra of the Boolean algebra \(A\), then \(f\) can be extended to a homomorphism of \(A\) into \(B\).

    Conclusion Statement
    Form 126 <p> \(MC(\aleph_0,\infty)\), <strong>Countable axiom of multiple choice:</strong> For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 7259, whose string of implications is:
    188 \(\Rightarrow\) 106 \(\Rightarrow\) 126

The conclusion Form 111 \( \not \Rightarrow \) Form 188 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N3\) Mostowski's Linearly Ordered Model \(A\) is countably infinite;\(\precsim\) is a dense linear ordering on \(A\) without first or lastelements (\((A,\precsim) \cong (\Bbb Q,\le)\)); \(\cal G\) is the group of allorder automorphisms on \((A,\precsim)\); and \(S\) is the set of all finitesubsets of \(A\)
\(\cal N29\) Dawson/Howard Model Let \(A=\bigcup\{B_n; n\in\omega\}\) is a disjoint union, where each \(B_n\) is denumerable and ordered like the rationals by \(\le_n\)
\(\cal N48\) Pincus' Model XI \(\cal A=(A,<,C_0,C_1,\dots)\) is called an<em>ordered colored set</em> (OC set) if \(<\) is a linear ordering on \(A\)and the \(C_i\), for \(i\in\omega\) are subsets of \(A\) such that for each\(a\in A\) there is exactly one \(n\in\omega\) such that \(a\in C_n\)

Edit | Back