This non-implication, Form 114 \( \not \Rightarrow \) Form 49, whose code is 6, is constructed around a proven non-implication as follows:

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 5229, whose string of implications is:
    218 \(\Rightarrow\) 67 \(\Rightarrow\) 114
  • A proven non-implication whose code is 5. In this case, it's Code 3: 546, Form 218 \( \not \Rightarrow \) Form 327 whose summary information is:
    Hypothesis Statement
    Form 218 <p> \((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then  there  is  a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\). </p>

    Conclusion Statement
    Form 327 <p> \(KW(WO,<\aleph_0)\),  <strong>The Kinna-Wagner Selection Principle for a well ordered family of finite sets:</strong> For every well ordered set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\)  then \(\emptyset\neq f(A)\subsetneq A\). (See <a href="/form-classes/howard-rubin-15">Form 15</a>.) </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 2211, whose string of implications is:
    49 \(\Rightarrow\) 30 \(\Rightarrow\) 62 \(\Rightarrow\) 121 \(\Rightarrow\) 122 \(\Rightarrow\) 327

The conclusion Form 114 \( \not \Rightarrow \) Form 49 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N6\) Levy's Model I \(A=\{a_n : n\in\omega\}\) and \(A = \bigcup \{P_n: n\in\omega\}\), where \(P_0 = \{a_0\}\), \(P_1 = \{a_1,a_2\}\), \(P_2 =\{a_3,a_4,a_5\}\), \(P_3 = \{a_6,a_7,a_8,a_9,a_{10}\}\), \(\cdots\); in generalfor \(n>0\), \(|P_n| = p_n\), where \(p_n\) is the \(n\)th prime

Edit | Back