This non-implication,
Form 119 \( \not \Rightarrow \)
Form 41,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 115 | <p> The product of weakly Loeb \(T_2\) spaces is weakly Loeb. <em>Weakly Loeb</em> means the set of non-empty closed subsets has a multiple choice function.) </p> |
Conclusion | Statement |
---|---|
Form 128 | <p> <strong>Aczel's Realization Principle:</strong> On every infinite set there is a Hausdorff topology with an infinite set of non-isolated points. </p> |
The conclusion Form 119 \( \not \Rightarrow \) Form 41 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N1\) The Basic Fraenkel Model | The set of atoms, \(A\) is denumerable; \(\cal G\) is the group of all permutations on \(A\); and \(S\) isthe set of all finite subsets of \(A\) |
\(\cal N2\) The Second Fraenkel Model | The set of atoms \(A=\{a_i : i\in\omega\}\) is partitioned into two element sets \(B =\{\{a_{2i},a_{2i+1}\} : i\in\omega\}\). \(\mathcal G \) is the group of all permutations of \( A \) that leave \( B \) pointwise fixed and \( S \) is the set of all finite subsets of \( A \). |