This non-implication, Form 122 \( \not \Rightarrow \) Form 384, whose code is 6, is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the transferability criterion. Click Transfer details for all the details)

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 1908, whose string of implications is:
    23 \(\Rightarrow\) 151 \(\Rightarrow\) 122
  • A proven non-implication whose code is 5. In this case, it's Code 3: 44, Form 23 \( \not \Rightarrow \) Form 99 whose summary information is:
    Hypothesis Statement
    Form 23 <p> \((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\). </p>

    Conclusion Statement
    Form 99 <p> <strong>Rado's Selection Lemma:</strong> Let \(\{K(\lambda): \lambda \in\Lambda\}\) be a family  of finite subsets (of \(X\)) and suppose for each finite \(S\subseteq\Lambda\) there is a function \(\gamma(S): S \rightarrow X\) such that \((\forall\lambda\in S)(\gamma(S)(\lambda)\in K(\lambda))\).  Then there is an \(f: \Lambda\rightarrow X\) such that for every finite \(S\subseteq\Lambda\) there is a finite \(T\) such that \(S\subseteq T\subseteq\Lambda\) and such that \(f\) and \(\gamma (T)\) agree on S. </p>

  • An (optional) implication of code 1 or code 2 is given. In this case, it's Code 2: 1322, whose string of implications is:
    384 \(\Rightarrow\) 14 \(\Rightarrow\) 99

The conclusion Form 122 \( \not \Rightarrow \) Form 384 then follows.

Finally, the
List of models where hypothesis is true and the conclusion is false:

Name Statement
\(\cal N5\) The Mathias/Pincus Model II (an extension of \(\cal N4\)) \(A\) iscountably infinite; \(\precsim\) and \(\le\) are universal homogeneous partialand linear orderings, respectively, on \(A\), (See <a href="/articles/Jech-1973b">Jech [1973b]</a>p101 for definitions.); \(\cal G\) is the group of all order automorphismson \((A,\precsim,\le)\); and \(S\) is the set of all finite subsets of \(A\)
\(\cal N7\) L\"auchli's Model I \(A\) is countably infinite

Edit | Back