This non-implication,
Form 142 \( \not \Rightarrow \)
Form 380,
whose code is 6,
is constructed around a proven non-implication as follows:
Note: This non-implication is actually a code 4, as this non-implication satisfies the
transferability criterion. Click
Transfer details for all the details)
Hypothesis | Statement |
---|---|
Form 63 | <p> \(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter. <br /> <a href="/books/8">Jech [1973b]</a>, p 172 prob 8.5. </p> |
Conclusion | Statement |
---|---|
Form 380 | <p> \(PC(\infty,WO,\infty)\): For every infinite family of non-empty well orderable sets, there is an infinite subfamily \(Y\) of \(X\) which has a choice function. </p> |
The conclusion Form 142 \( \not \Rightarrow \) Form 380 then follows.
Finally, the
List of models where hypothesis is true and the conclusion is false:
Name | Statement |
---|---|
\(\cal N24\) Hickman's Model I | This model is a variation of \(\cal N2\) |
\(\cal N49\) De la Cruz/Di Prisco Model | Let \(A = \{ a(i,p) : i\in\omega\land p\in {\Bbb Q}/{\Bbb Z} \}\) |