Description:
Content:
In this note we prove that
Using \(A\) we define a function \(F:\omega^\omega \to \{0,1\}\) by
\[F(g) = \begin{cases}
0 & \hbox{if g is strictly increasing and range} (g) \in A \\
1 & \hbox{otherwise} \\
\end{cases}
\]
Let \(X\) be the infinite subset of \(\omega\) guaranteed by\(\omega\to(\omega)^\omega\). For each infinite subset \(Y\) of \(\omega\),let \(g_Y \in\omega^\omega\) be the unique strictly increasing function whose range is \(Y\). Then \(F(g_Y) = 0\) if and only if \(Y\in A\). Either (i) or (ii) must be true of \(X\) and \(F\). If (i) holds then for every infinite \(Y\subseteq X\), \(g_Y\in X^\omega\) so \(F(g_Y) = 0\) and hence \(Y\in A\). On the other hand, if (ii) holds then for every infinite \(Y\subseteq X\), \(g_Y\in X^\omega\) so \(F(g_Y) = 1\) and hence \(Y\notin A\). This contradicts the assumption that \(A\) is non-Ramsey.
Howard-Rubin number: 142
Type: Proof
Back