Description: A summary of the definitions and results from Brunner [1983d]

Content:

A summary of the definitions and results from Brunner [1983d].

Brunner considers 16 properties a topological space \((X,{\underline{X}})\) may have:

 
W1: \(\underline{X}\) is w.o. (well ordered);
W2: \(X\) is w.o.;
D1: \(X\) is covered by a w.o. family of closed, discrete sets.
D2: \(X\) is covered by a w.o. family of discrete sets;
B1: \(X\) has a w.o. base
B2: \(\exists  f: X\times W \rightarrow  {\underline{X}}\) such that \(W\) is w.o. and \(f'(\{x\}\times W)\) is a  neighborhood base at \(x\) for each \(x \in X\).
B3: \(\exists f: X\times W\rightarrow\underline{X}\) such that \(W\) is w.o. and \(\forall x\in X\), \(\{x\} = \bigcap f'(\{x\}\times W)\)
L1: Each open cover of \(X\) has a w.o. subcover;
L2: Each open cover of \(X\) has a w.o. refinement;
S: \(X\) has a dense, w.o. subset;
C: Each family \(O \subseteq {\underline{ X}}\) of pairwise disjoint sets is w.o.
A1:If \(O \subseteq  {\underline{X}}\) covers \(X\), \(\exists  f: X \rightarrow  O\) such that \()\forall  x \in  X\), \(x \in  f(x)\);
A2: If \(O \subseteq  {\underline{ X}}\) covers \(X\), \(\exists  f: X \rightarrow  {\underline{ X}}\) s.t. \(\forall  x \in  X\), \(x \in  f(x)\) and  \(f'X\) refines \(O\);
H1: \(X\) is hereditarily \(A1\);
H2: \(X\) is hereditarily \(A2\);
F: \(X\) is a continuous finite to one image of an \(A1\) space.

Definition: If \(P\) is one of the above then

  • \(A(P)\) is the statement: ``Every topological space \((X,{\underline X})\) is P.''
  • \(A(P,Q)\) is the statement: ``If  a topological space satisfies \(P\) then it satisfies \(Q\).''
All of the \(A(P)\)'s occur in the list of forms, but not all the \(A(P,Q)\)'s occur.


The table below, taken from Brunner [1983d], summarizes the results. In the table, 0 means that \(A(P,Q)\) (\(P\) the row heading and \(Q\) the column heading)  is provable in \(ZF^{0}\). \(N\) means \(A(P,Q)\) is not provable in  \(ZF^{0}\).  \(AC\)  (Form 1), \(MC\) (Form 67) and \(PW\) (Form 91) mean respectively that \(A(P,Q)\) is  equivalent  to \(AC,\ MC\) or \(PW\) in \(ZF^{0}\).  And \(IMC\) or \(IPW\) mean that \(A(P,Q)\) implies \(MC\) or \(PW\) respectively in \(ZF^{0}\).

Here's the table:
\[ \begin{array}{lc|ccccccccccccccccc} \\ &  & & W1 & W2 & D1 & D2 & B1 & B2 & B3 & L1 & L2 & S & C & H1 & H2 & A1 & F & A2 \\ \hline & W1 &&  0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ & W2 && PW & 0 & 0 & 0 & ? & ? & 0 & N & ? & 0 & 0 & N & ? & N & N & ?\\ & D1 && AC & AC & 0 & 0 & AC & N & 0 & AC & AC & AC & AC & AC & N & AC & MC & N\\ &D2 &&  AC & AC &IMC& 0 & AC & MC & MC &  AC & AC & AC & AC & AC & MC & AC & MC & MC \\ &B1 && PW &IPW&IPW&IPW& 0 & 0 & 0 & N & 0 & N & 0 & N & 0 & N & N & 0 \\ &B2 && AC & AC &IPW&IPW& AC & 0 & 0 & AC & AC & AC & AC & AC & 0 & AC & MC & 0 \\ &B3 && AC & AC &IPW&IPW& AC & N & 0 & AC & AC & AC & AC & AC & N & AC & MC & N \\ &L1 && AC & AC & MC & N & AC & MC & MC & 0 & 0 & AC & AC & AC & MC & 0 & 0 & 0 \\ &L2 &&  AC & AC & MC &IPW& AC & MC & MC & N & 0 & AC & AC & AC & MC & N & N &  0 \\ &S && PW &IPW&IPW&IPW& N & N & ? & N & N & 0 & 0 & N & N & N & N & N \\ &C &&IPW& PW & PW & PW &  N & N & N & N & N & N & 0 & N & N & N & N & N \\ &H1 &&  N & N & N & ? & N & N & N & N & N & N & N & 0 & 0 & 0 & 0 & 0 \\ &H2 &&  AC & AC & AC &IPW& AC & MC & MC &  AC & AC & AC & AC & AC & 0 & AC & MC & 0 \\ &A1 && AC & AC & MC & N & AC & MC & MC & N & N & AC & AC & AC & MC & 0 & 0 & 0 \\ &F && AC & AC & MC & N & AC & MC & MC & N & N & AC & AC & AC & MC & N & 0 & 0 \\ &A2 && AC & AC & MC &IPW& AC & MC & MC & AC & AC & AC & AC & AC & MC & AC & MC & 0 \\ \end{array} \]


Theorem  

  1. \(ZF \vdash A(P) \leftrightarrow AC\) for all \(P\) in the list.
  2. \(ZF^0 \vdash A(P)\leftrightarrow AC\) for \(P \in \{W1,W2,B1,L1,L2,S,C,H1,A1\}.\)
  3. \(ZF^0 \vdash A(P)\leftrightarrow MC\) ( Form 67) for \(P \in  \{D1,B2,B3,H2,A2\}.\)
  4. \(ZF^0 \vdash  AC \rightarrow  A(F) \rightarrow  MC\) (Form 67) \( \rightarrow  A(D2) \rightarrow  PW\) ( Form 91).

Howard-Rubin number: 26

Type: Summary of definitions and results

Back