We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
214 \(\Rightarrow\) 9 | clear |
9 \(\Rightarrow\) 10 | Zermelo's Axiom of Choice, Moore, 1982, 322 |
10 \(\Rightarrow\) 358 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
214: | \(Z(\omega)\): For every family \(A\) of infinite sets, there is a function \(f\) such that for all \(y\in A\), \(f(y)\) is a non-empty subset of \(y\) and \(|f(y)|=\aleph_{0}\). |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
358: | \(KW(\aleph_0,<\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of finite sets: For every denumerable set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). |
Comment: