We have the following indirect implication of form equivalence classes:

218 \(\Rightarrow\) 430-p
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
218 \(\Rightarrow\) 430-p clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
218:

\((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then  there  is  a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\).

430-p:

(Where \(p\) is a prime) \(AL21\)\((p)\): Every vector space over \(\mathbb Z_p\) has the property that for every subspace \(S\) of \(V\), there is a subspace \(S'\) of \(V\) such that \(S \cap S' = \{ 0 \}\) and \(S \cup S'\) generates \(V\) in other words such that \(V = S \oplus S'\).   Rubin, H./Rubin, J [1985], p.119, AL21.

Comment:

Back