We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
31 \(\Rightarrow\) 35 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
35: | The union of countably many meager subsets of \({\Bbb R}\) is meager. (Meager sets are the same as sets of the first category.) Jech [1973b] p 7 prob 1.7. |
Comment: