We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
31 \(\Rightarrow\) 34 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
34: | \(\aleph_{1}\) is regular. |
Comment: