We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
161 \(\Rightarrow\) 9 |
Defining cardinal addition by \(le\)-formulas, Haussler, A. 1983, Fund. Math. |
9 \(\Rightarrow\) 13 | clear |
13 \(\Rightarrow\) 199(\(n\)) | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
161: | Definability of cardinal addition in terms of \(\le\): There is a first order formula whose only non-logical symbol is \( \le \) (for cardinals) that defines cardinal addition. |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
13: | Every Dedekind finite subset of \({\Bbb R}\) is finite. |
199(\(n\)): | (For \(n\in\omega-\{0,1\}\)) If all \(\varSigma^{1}_{n}\), Dedekind finite subsets of \({}^{\omega }\omega\) are finite, then all \(\varPi^1_n\) Dedekind finite subsets of \({}^{\omega} \omega\) are finite. |
Comment: