We have the following indirect implication of form equivalence classes:

375 \(\Rightarrow\) 119
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
375 \(\Rightarrow\) 119 note-138

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
375:

Tietze-Urysohn Extension Theorem: If \((X,T)\) is a normal topological space, \(A\) is closed in \(X\), and \(f: A\to [0,1]\) is continuous, then there exists a continuous function \(g: X\to [0,1]\) which extends \(f\).

119:

van Douwen's choice principle: \(C(\aleph_{0}\),uniformly orderable with order type of the integers): Suppose \(\{ A_{i}: i\in\omega\}\) is a set and there is a function \(f\) such that for each \(i\in\omega,\ f(i)\) is an ordering of \(A_{i}\) of type \(\omega^{*}+\omega\) (the usual ordering of the integers), then \(\{A_{i}: i\in\omega\}\) has a choice function.

Comment:

Back