We have the following indirect implication of form equivalence classes:

161 \(\Rightarrow\) 18
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
161 \(\Rightarrow\) 9 Defining cardinal addition by \(le\)-formulas, Haussler, A. 1983, Fund. Math.
9 \(\Rightarrow\) 17 The independence of Ramsey's theorem, Kleinberg, E.M. 1969, J. Symbolic Logic
17 \(\Rightarrow\) 18 Ramsey's theorem in the hierarchy of choice principles, Blass, A. 1977a, J. Symbolic Logic
The Axiom of Choice, Jech, 1973b, page 164 problem 11.20

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
161:

Definability of cardinal addition in terms of \(\le\): There is a first order formula whose only non-logical symbol is \( \le \) (for cardinals) that defines cardinal addition.

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

17:

Ramsey's Theorem I: If \(A\) is an infinite set and the family of all 2 element subsets of \(A\) is partitioned into 2 sets \(X\) and \(Y\), then there is an infinite subset \(B\subseteq A\) such that all 2 element subsets of \(B\) belong to \(X\) or all 2 element subsets of \(B\) belong to \(Y\). (Also, see Form 325.), Jech [1973b], p 164 prob 11.20.

18:

\(PUT(\aleph_{0},2,\aleph_{0})\):  The union of a denumerable family of pairwise disjoint pairs has a denumerable subset.

Comment:

Back