We have the following indirect implication of form equivalence classes:

100 \(\Rightarrow\) 132
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
100 \(\Rightarrow\) 9 On the existence of large sets of Dedekind cardinals, Tarski, A. 1965, Notices Amer. Math. Soc.
The Axiom of Choice, Jech, 1973b, page 162 problem 11.8
9 \(\Rightarrow\) 17 The independence of Ramsey's theorem, Kleinberg, E.M. 1969, J. Symbolic Logic
17 \(\Rightarrow\) 132 Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
100:

Weak Partition Principle:  For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\).

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

17:

Ramsey's Theorem I: If \(A\) is an infinite set and the family of all 2 element subsets of \(A\) is partitioned into 2 sets \(X\) and \(Y\), then there is an infinite subset \(B\subseteq A\) such that all 2 element subsets of \(B\) belong to \(X\) or all 2 element subsets of \(B\) belong to \(Y\). (Also, see Form 325.), Jech [1973b], p 164 prob 11.20.

132:

\(PC(\infty, <\aleph_0,\infty)\):  Every infinite family of finite  sets has an infinite subfamily with a choice function.

Comment:

Back