We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
71-alpha \(\Rightarrow\) 9 | clear |
9 \(\Rightarrow\) 17 |
The independence of Ramsey's theorem, Kleinberg, E.M. 1969, J. Symbolic Logic |
17 \(\Rightarrow\) 124 |
Hilbertraume mit amorphen Basen (English summary), Brunner, N. 1984a, Compositio Math. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
71-alpha: | \(W_{\aleph_{\alpha}}\): \((\forall x)(|x|\le\aleph_{\alpha }\) or \(|x|\ge \aleph_{\alpha})\). Jech [1973b], page 119. |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
17: | Ramsey's Theorem I: If \(A\) is an infinite set and the family of all 2 element subsets of \(A\) is partitioned into 2 sets \(X\) and \(Y\), then there is an infinite subset \(B\subseteq A\) such that all 2 element subsets of \(B\) belong to \(X\) or all 2 element subsets of \(B\) belong to \(Y\). (Also, see Form 325.), Jech [1973b], p 164 prob 11.20. |
124: | Every operator on a Hilbert space with an amorphous base is the direct sum of a finite matrix and a scalar operator. (A set is amorphous if it is not the union of two disjoint infinite sets.) |
Comment: