We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
1 \(\Rightarrow\) 58 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
1: | \(C(\infty,\infty)\): The Axiom of Choice: Every set of non-empty sets has a choice function. |
58: |
There is an ordinal \(\alpha\) such that \(\aleph(2^{\aleph_{\alpha }})\neq\aleph_{\alpha +1}\). (\(\aleph(2^{\aleph_{\alpha}})\) is Hartogs' aleph, the least \(\aleph\) not \(\le 2^{\aleph _{\alpha}}\).) |
Comment: