We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 9 \(\Rightarrow\) 64 |
The independence of various definitions of finiteness, Levy, A. 1958, Fund. Math. clear |
| 64 \(\Rightarrow\) 127 |
Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
| 64: | \(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.) |
| 127: | An amorphous power of a compact \(T_2\) space, which as a set is well orderable, is well orderable. |
Comment: