We have the following indirect implication of form equivalence classes:

1 \(\Rightarrow\) 131
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
1 \(\Rightarrow\) 131

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
1:

\(C(\infty,\infty)\):  The Axiom of Choice: Every  set  of  non-empty sets has a choice function.

131:

\(MC_\omega(\aleph_0,\infty)\): For every denumerable family \(X\) of pairwise disjoint non-empty sets, there is a function \(f\) such that for each \(x\in X\), f(x) is a non-empty countable subset of \(x\).

Comment:

Back