We have the following indirect implication of form equivalence classes:

1 \(\Rightarrow\) 146
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
1 \(\Rightarrow\) 146

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
1:

\(C(\infty,\infty)\):  The Axiom of Choice: Every  set  of  non-empty sets has a choice function.

146:

\(A(F,A1)\): For every \(T_2\) topological space \((X,T)\), if \(X\) is a continuous finite to one image of an A1 space then \((X,T)\) is  an A1 space. (\((X,T)\) is A1 means if \(U \subseteq  T\) covers \(X\) then \(\exists f : X\rightarrow U\) such that \((\forall x\in X) (x\in f(x)).)\)

Comment:

Back