We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
1 \(\Rightarrow\) 205 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
1: | \(C(\infty,\infty)\): The Axiom of Choice: Every set of non-empty sets has a choice function. |
205: | For all cardinals \(m\) and \(n\), if \(m\le^* n\) and \(\neg (n\le^* m)\) then there is a cardinal \(k \le n\) such that \(m\le^* k\). |
Comment: