We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
1 \(\Rightarrow\) 218 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
1: | \(C(\infty,\infty)\): The Axiom of Choice: Every set of non-empty sets has a choice function. |
218: | \((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\). |
Comment: