We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
1 \(\Rightarrow\) 257 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
1: | \(C(\infty,\infty)\): The Axiom of Choice: Every set of non-empty sets has a choice function. |
257: | \(Z(TR,P)\): Every transitive relation \((X,R)\) in which every partially ordered subset has an upper bound, has a maximal element. |
Comment: