We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 1 \(\Rightarrow\) 311 |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 1: | \(C(\infty,\infty)\): The Axiom of Choice: Every set of non-empty sets has a choice function. |
| 311: | Abelian groups are amenable. (\(G\) is amenable if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G)=1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).) |
Comment: