We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
214 \(\Rightarrow\) 9 | clear |
9 \(\Rightarrow\) 82 | clear |
82 \(\Rightarrow\) 387 |
"Dense orderings, partitions, and weak forms of choice", Gonzalez, C. 1995a, Fund. Math. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
214: | \(Z(\omega)\): For every family \(A\) of infinite sets, there is a function \(f\) such that for all \(y\in A\), \(f(y)\) is a non-empty subset of \(y\) and \(|f(y)|=\aleph_{0}\). |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
82: | \(E(I,III)\) (Howard/Yorke [1989]): If \(X\) is infinite then \(\cal P(X)\) is Dedekind infinite. (\(X\) is finite \(\Leftrightarrow {\cal P}(X)\) is Dedekind finite.) |
387: | DPO: Every infinite set has a non-trivial, dense partial order. (A partial ordering \(<\) on a set \(X\) is dense if \((\forall x, y\in X)(x \lt y \to (\exists z \in X)(x \lt z \lt y))\) and is non-trivial if \((\exists x,y\in X)(x \lt y)\)). |
Comment: