We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 27 \(\Rightarrow\) 0 |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 27: | \((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36. |
| 0: | \(0 = 0\). |
Comment: