We have the following indirect implication of form equivalence classes:

71-alpha \(\Rightarrow\) 71-alpha
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
71-alpha \(\Rightarrow\) 71-alpha

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
71-alpha:  

\(W_{\aleph_{\alpha}}\): \((\forall x)(|x|\le\aleph_{\alpha }\) or \(|x|\ge \aleph_{\alpha})\). Jech [1973b], page 119.

71-alpha:  

\(W_{\aleph_{\alpha}}\): \((\forall x)(|x|\le\aleph_{\alpha }\) or \(|x|\ge \aleph_{\alpha})\). Jech [1973b], page 119.

Comment:

Back