We have the following indirect implication of form equivalence classes:

129 \(\Rightarrow\) 0
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
129 \(\Rightarrow\) 0

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
129:

For every infinite set \(A\), \(A\) admits a partition into sets of order type \(\omega^{*} + \omega\). (For every infinite \(A\), there is a set \(\{\langle C_j,<_j \rangle: j\in J\}\) such that \(\{C_j: j\in J\}\) is a partition of \(A\) and for each \(j\in J\), \(<_j\) is an ordering of \(C_j\) of type \(\omega^* + \omega\).)

0:  \(0 = 0\).

Comment:

Back