We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
146 \(\Rightarrow\) 146 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
146: | \(A(F,A1)\): For every \(T_2\) topological space \((X,T)\), if \(X\) is a continuous finite to one image of an A1 space then \((X,T)\) is an A1 space. (\((X,T)\) is A1 means if \(U \subseteq T\) covers \(X\) then \(\exists f : X\rightarrow U\) such that \((\forall x\in X) (x\in f(x)).)\) |
146: | \(A(F,A1)\): For every \(T_2\) topological space \((X,T)\), if \(X\) is a continuous finite to one image of an A1 space then \((X,T)\) is an A1 space. (\((X,T)\) is A1 means if \(U \subseteq T\) covers \(X\) then \(\exists f : X\rightarrow U\) such that \((\forall x\in X) (x\in f(x)).)\) |
Comment: