We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
219 \(\Rightarrow\) 219 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
219: | \((\forall n\in\omega-\{0\}) MC(\infty,WO\), relatively prime to \(n\)): For all non-zero \(n\in \omega\), if \(X\) is a set of non-empty well orderable sets, then there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\), and \(|f(x)|\) is relatively prime to \(n\). |
219: | \((\forall n\in\omega-\{0\}) MC(\infty,WO\), relatively prime to \(n\)): For all non-zero \(n\in \omega\), if \(X\) is a set of non-empty well orderable sets, then there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\), and \(|f(x)|\) is relatively prime to \(n\). |
Comment: