We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 224 \(\Rightarrow\) 224 |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 224: | There is a partition of the real line into \(\aleph_1\) Borel sets \(\{B_\alpha: \alpha<\aleph_1\}\) such that for some \(\beta <\aleph_1\), \(\forall\alpha <\aleph_1\), \(B_{\alpha}\in G_{\beta}\). (\(G_\beta\) for \(\beta < \aleph_1\) is defined by induction, \(G_0=\{A: A\) is an open subset of \({\Bbb R}\}\) and for \(\beta > 0\),
|
| 224: | There is a partition of the real line into \(\aleph_1\) Borel sets \(\{B_\alpha: \alpha<\aleph_1\}\) such that for some \(\beta <\aleph_1\), \(\forall\alpha <\aleph_1\), \(B_{\alpha}\in G_{\beta}\). (\(G_\beta\) for \(\beta < \aleph_1\) is defined by induction, \(G_0=\{A: A\) is an open subset of \({\Bbb R}\}\) and for \(\beta > 0\),
|
Comment: