We have the following indirect implication of form equivalence classes:

323 \(\Rightarrow\) 323
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
323 \(\Rightarrow\) 323

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
323:

\(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See Form 15.)

323:

\(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See Form 15.)

Comment:

Back