We have the following indirect implication of form equivalence classes:

336-n \(\Rightarrow\) 336-n
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
336-n \(\Rightarrow\) 336-n

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
336-n:

(For \(n\in\omega\), \(n\ge 2\).)  For every infinite set \(X\), there is an infinite \(Y \subseteq X\) such that the set of all \(n\)-element subsets of \(Y\) has a choice function.

336-n:

(For \(n\in\omega\), \(n\ge 2\).)  For every infinite set \(X\), there is an infinite \(Y \subseteq X\) such that the set of all \(n\)-element subsets of \(Y\) has a choice function.

Comment:

Back