We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
342-n \(\Rightarrow\) 342-n |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
342-n: | (For \(n\in\omega\), \(n\ge 2\).) \(PC(\infty,n,\infty)\): Every infinite family of \(n\)-element sets has an infinite subfamily with a choice function. (See Form 166.) |
342-n: | (For \(n\in\omega\), \(n\ge 2\).) \(PC(\infty,n,\infty)\): Every infinite family of \(n\)-element sets has an infinite subfamily with a choice function. (See Form 166.) |
Comment: