We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
379 \(\Rightarrow\) 379 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
379: | \(PKW(\infty,\infty,\infty)\): For every infinite family \(X\) of sets each of which has at least two elements, there is an infinite subfamily \(Y\) of \(X\) and a function \(f\) such that for all \(y\in Y\), \(f(y)\) is a non-empty proper subset of \(y\). |
379: | \(PKW(\infty,\infty,\infty)\): For every infinite family \(X\) of sets each of which has at least two elements, there is an infinite subfamily \(Y\) of \(X\) and a function \(f\) such that for all \(y\in Y\), \(f(y)\) is a non-empty proper subset of \(y\). |
Comment: