We have the following indirect implication of form equivalence classes:

395 \(\Rightarrow\) 0
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
395 \(\Rightarrow\) 0

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
395:

\(MC(LO,LO)\): For each linearly ordered family of non-empty linearly orderable sets \(X\), there is a function \(f\) such that for all \(x\in X\) \(f(x)\) is a non-empty, finite subset of \(x\).

0:  \(0 = 0\).

Comment:

Back