We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 31 \(\Rightarrow\) 31 |
Ein Beitrag zur Mannigfaltigkeitslehre, Cantor, G. 1878, J. Reine Angew. Math. |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
| 31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
Comment: