We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
56 \(\Rightarrow\) 56 |
A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
56: |
\(\aleph(2^{\aleph_{0}})\neq\aleph_{\omega}\). (\(\aleph(2^{\aleph_{0}})\) is Hartogs' aleph, the least \(\aleph\) not \(\le 2^{\aleph_{0}}\).) |
56: |
\(\aleph(2^{\aleph_{0}})\neq\aleph_{\omega}\). (\(\aleph(2^{\aleph_{0}})\) is Hartogs' aleph, the least \(\aleph\) not \(\le 2^{\aleph_{0}}\).) |
Comment: