We have the following indirect implication of form equivalence classes:

119 \(\Rightarrow\) 119
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
119 \(\Rightarrow\) 119 Horrors of topology without AC: A non-normal orderable space, van Douwen, E.K. 1985, Proc. Amer. Math. Soc.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
119:

van Douwen's choice principle: \(C(\aleph_{0}\),uniformly orderable with order type of the integers): Suppose \(\{ A_{i}: i\in\omega\}\) is a set and there is a function \(f\) such that for each \(i\in\omega,\ f(i)\) is an ordering of \(A_{i}\) of type \(\omega^{*}+\omega\) (the usual ordering of the integers), then \(\{A_{i}: i\in\omega\}\) has a choice function.

119:

van Douwen's choice principle: \(C(\aleph_{0}\),uniformly orderable with order type of the integers): Suppose \(\{ A_{i}: i\in\omega\}\) is a set and there is a function \(f\) such that for each \(i\in\omega,\ f(i)\) is an ordering of \(A_{i}\) of type \(\omega^{*}+\omega\) (the usual ordering of the integers), then \(\{A_{i}: i\in\omega\}\) has a choice function.

Comment:

Back