We have the following indirect implication of form equivalence classes:
			
| Implication | Reference | 
|---|---|
| 11 \(\Rightarrow\) 12 | clear | 
| 12 \(\Rightarrow\) 336-n | clear | 
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement | 
|---|---|
| 11: | A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\), \(A\) has an infinite subset \(B\) such that for every \(n\in\omega\), \(n>0\), the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco [1998b] | 
| 12: | A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\) and every \(n\in\omega\), there is an infinite subset \(B\) of \(A\) such the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco} [1998b] | 
| 336-n: | (For \(n\in\omega\), \(n\ge 2\).) For every infinite set \(X\), there is an infinite \(Y \subseteq X\) such that the set of all \(n\)-element subsets of \(Y\) has a choice function. | 
Comment: