We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
211 \(\Rightarrow\) 13 | clear |
13 \(\Rightarrow\) 199(\(n\)) | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
211: | \(DCR\): Dependent choice for relations on \(\Bbb R\): If \(R\subseteq\Bbb R\times\Bbb R\) satisfies \((\forall x\in \Bbb R)(\exists y\in\Bbb R)(x\mathrel R y)\) then there is a sequence \(\langle x(n): n\in\omega\rangle\) of real numbers such that \((\forall n\in\omega)(x(n)\mathrel R x(n+1))\). |
13: | Every Dedekind finite subset of \({\Bbb R}\) is finite. |
199(\(n\)): | (For \(n\in\omega-\{0,1\}\)) If all \(\varSigma^{1}_{n}\), Dedekind finite subsets of \({}^{\omega }\omega\) are finite, then all \(\varPi^1_n\) Dedekind finite subsets of \({}^{\omega} \omega\) are finite. |
Comment: