We have the following indirect implication of form equivalence classes:

407 \(\Rightarrow\) 154
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
407 \(\Rightarrow\) 14 Effective equivalents of the Rasiowa-Sikorski lemma, Bacsich, P. D. 1972b, J. London Math. Soc. Ser. 2.
14 \(\Rightarrow\) 154 Kategoriesatze und multiples Auswahlaxiom, Brunner, N. 1983c, Z. Math. Logik Grundlagen Math.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
407:

Let \(B\) be a Boolean algebra, \(b\) a non-zero element of \(B\) and \(\{A_i: i\in\omega\}\) a sequence of subsets of \(B\) such that for each \(i\in\omega\), \(A_i\) has a supremum \(a_i\). Then there exists an ultrafilter \(D\) in \(B\) such that \(b\in D\) and, for each \(i\in\omega\), if \(a_i\in D\), then \(D\cap\ A_i\neq\emptyset\).

14:

BPI: Every Boolean algebra has a prime ideal.

154:

Tychonoff's Compactness Theorem for Countably Many \(T_2\) Spaces: The product of countably many \(T_2\) compact spaces is compact.

Comment:

Back